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Abstract

We use process level large deviation analysis to obtain the rate
function for a general family of occupancy problems. Our interest
is the asymptotics of the empirical distributions of various quantities
(such as the fraction of urns that contain a given number of balls). In
the general setting, balls are allowed to land in a given urn depending
on the urn’s contents prior to the throw. We discuss a parametric
family of statistical models which includes Maxwell-Boltzmann, Bose-
Einstein and Fermi-Dirac statistics as special cases. A process level
large deviation analysis is conducted and the rate function for the
original problem is then characterized, via the contraction principle,
by the solution to a calculus of variations problem. We conjecture
that the solution to the variational problem coincides with that of a
finite dimensional minimization problem.

1 Introduction

Occupancy problems center on the distribution of r balls that have been
thrown into n urns. In the simplest scenario each ball is equally likely to
land in any of the urns, i.e., each ball is independently assigned to a given urn
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with probability 1/n. In this case, we say that the urn model uses Maxwell-
Boltzmann (MB) statistics. This model has been studied for decades and
applied in diverse fields such as computer science, biology, and statistics.
See [2, 6, 7] and the references therein. However, balls may also enter the
urns in a nonuniform way. An important generalization is to allow the
likelihood that the ball lands in a given urn to depend on its contents prior
to the throw, as in Bose-Einstein (BE) and Fermi-Dirac (FD) statistics.
See [7, 4, 9] and the references therein.

For MB statistics, many results have been obtained using “exact” meth-
ods. For example, combinatorial methods are used in [5] and methods that
use generating functions are discussed in [7]. Although they do not directly
involve approximations, the implementation of these methods can be dif-
ficult. For example, in combinatorial methods one has to deal with the
difference of events using the inclusion-exclusion formula and the resulting
computations can involve large errors. In the moment generating function
approach in [7] similar difficulties occur.

Large deviations approximations give an attractive alternative to both
of these approaches. One reason is that they offer good approximations with
just modest computation. A second, perhaps more important reason, is that
qualitative insights can be obtained. In [8] the LDP for the MB model is
obtained, and the rate function exhibited in more-or-less explicit form.

In the present paper, we discuss a parametric family of statistical models,
of which the previously mentioned MB, BE and FD statistics are all special
cases. We assume there are n urns and that bTnc balls are thrown into
them (where bsc denotes the integer part of s), and analyze the asymptotic
properties as n goes to ∞. A typical problem of interest is to characterize
the large deviation asymptotics of the empirical distribution after all the
balls are thrown. For example, one can wish to estimate the probability
that at most half of the urns are empty after all the balls are thrown. A
direct analysis of this problem is hard, and instead we lift the problem to
the process level and analyze the large deviation asymptotics at this process
level. Once the process level large deviation analysis is done, one can apply
the Contraction Mapping Theorem to answer the original question. We
conjecture that the variational problem that results from the contractions
principle can in fact be solved explicitly (as was done in [8] for MB), and
the formula is stated in Section 6.

Although process level large deviations are by now quite standard, there
are several interesting features, both qualitative and technical, which distin-
guish occupancy models and place them outside the range of existing theory.
The most significant of these as far as the proof is concerned are the singular
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transition rates that occur in the (Markovian) process level description of
the model. We will use a weak convergence approach that is naturally suited
to these problems and results in a nicely compact and self contained proof,
and one that can easily accommodate further generalization of the model.
A second very interesting feature is the previously mentioned possibility for
explicit solutions to the variational problems that arise in the process level
approximations.

The outline of the paper is as follows. In Section 2 the parametric family
of occupancy problem is described in detail. A dynamical system charac-
terization of the random occupancy process is given, and a representation
for certain exponential integrals is given in terms of a “controlled” occu-
pancy process. From this representation formula one can identify the large
deviation rate function immediately. In Section 3 we prove the lower bound
for the Laplace principle, which corresponds to the large deviation upper
bound. In Section 4, the rate function I is studied more closely so as to
deal the technical difficulty of the singular transition rates. In Section 5, we
prove the upper bound for the Laplace principle which corresponds to the
large deviation lower bound. Finally, in Section 6 we conjecture a simplified
formula of the rate function for the process at a given fixed time.

2 Preliminaries and Main Result

In this section, we formulate the problem of interest and state the LDP. The
proof is given in sections that follow. As described in the introduction, we
focus on the asymptotic behavior of the general occupancy problem.

The general occupancy problem has the same structure as the Maxwell-
Boltzmann occupancy problem, except that in the general problem urns are
distinguished according to the number of balls contained therein. The full
collection of models will be indexed by a parameter a. This parameter takes
values in the set (0,∞] ∪ {−1,−2, . . .}, and its interpretation is as follows.
Suppose that a ball is about to be thrown into a fixed set of urns, and that
any two urns (labeled say A and B) are selected. An urn is said to be of
category i if it contains i balls. Suppose that urn A is of category i, while
B is of category j. Then the probability that the ball is thrown into urn
A, conditioned on the state of all the urns and that the ball is thrown into
either urn A or B, is

a + i

(a + i) + (a + j)
.

When a = ∞ we interpret this to mean that the two urns are equally likely.
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Also, when a < 0 we use this ratio to define the probabilities only when
0 ≤ i ∨ j ≤ −a and i < −a or j < −a, so the formula gives a well defined
probability. The probability that a ball is placed in an urn of category −a

is 0. Thus under this model, urns can only be of category 0, 1, . . .− a, and
we only throw balls into categories 0, 1, . . .− a − 1.

In this setup, certain special cases are distinguished. The cases a = 1,
a = ∞, a = −I correspond to what are called Bose-Einstein statistics,
Maxwell-Boltzmann statistics, and Fermi-Dirac statistics, respectively.

Suppose that before we throw a ball there are already tn balls in all
the urns, and further suppose that the occupancy state is (x0, x1, . . .xI+).
Here xi, i = 0, . . . , I denotes the fraction of urns that contain i balls, and xI+

denotes the fraction containing more than I balls. Then the “un-normalized”
or “relative” probability of throwing into a category i urn with i ≤ I is
simply (a + i)xi. Let us temporarily abuse notation, and let xI+1, xI+2, . . .

denote the exact fraction in each category i with i > I . Since there are tn
balls in the urns before we throw,

∑∞
i=0 ixi = t. Thus the (normalized and

true) probability that the ball is placed in an urn that contains exactly i

balls, i = 0, . . .I , is (a+i)xi

a+t , and the probability that the ball is placed in an
urn that has more than I balls is 1 −

∑I
j=0

a+j
a+txj .

An explicit construction of this process is as follows. To simplify, we
assume the empty initial condition, i.e., all urns are empty. One can consider
other initial conditions, with only simple notational changes in the results
to be stated below. We introduce a time variable t that ranges from 0 to
T. At a time t that is of the form l/n, with 0 ≤ l ≤ bnT c an integer,
l balls have been thrown. Let Xn(t) =

{
Xn

0 (t), Xn
1 (t), . . .Xn

I (t), Xn
I+(t)

}

be the occupancy state at that time. As noted previously, Xn
i (t) denotes

the fraction of urns that contain i balls at time t, i = 0, . . . I , and Xn
I+(t)

the fraction of urns that contain more than I balls. The definition of Xn is
extended to all t ∈ [0, T ] not of the form l/n by piecewise linear interpolation.
Note that Xn(t) is indeed a probability vector in RI+2. If

SI
.=

{
x ∈ RI+2 : xi ≥ 0, 0 ≤ i ≤ I + 1 and

I+1∑

i=0

xi = 1

}
,

then for any t ∈ [0, T ] , Xn(t) ∈ SI . Thus Xn takes values in U .= C ([0, T ] ,SI).
We equip U with the usual supremum norm and on SI we take the usual L1

norm.
It will be convenient to work with the following “dynamical system”

representation. For x ∈ RI+2 and t ∈ [0,−a1{a<0} + ∞1{a>0}) define the
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vector ρ(t, x) ∈ RI+2 by

ρk(t, x) =
a + k

a + t
xk, for k = 0, . . . I, (2.1)

and

ρI+1(t, x) = 1 −
I∑

k=0

a + k

a + t
xk.

A direct calculation shows that if

x ∈ SI and
I+1∑

k=0

kxk ≤ t, (2.2)

then ρ(t, x) is indeed a probability vector in RI+2, i.e., ρ(t, x) ∈ SI . We can
then define a family of independent random vector fields

{
yi,n(·) : i = 0, 1, . . .bnT c − 1, bnT c

}

that take values in

Λ .= {ej+1 − ej , 0 ≤ j ≤ I} ∪ {0}

and with distributions

P
{
yi,n(x) = v

}
=

{
ρk

(
i
n , x

)
if v = ek+1 − ek 0 ≤ k ≤ I

ρI+1

(
i
n , x

)
if v = 0

.

Finally, we define Xn(l/n) recursively by

Xn ((i + 1)/n) = Xn (i/n) +
1
n

yi,n (Xn (i/n)) ,

and the initial condition Xn(0) = (1, 0, . . .0). Observe that the increments{
yi,n (Xn (i/n))

}
are conditionally distributed according to ρ

(
i
n , Xn(i/n)

)
,

and thus the process Xn is obviously Markovian and will have the same
distribution as the occupancy process described previously.

Often one is interested in the large deviations of the empirical occupancy
measure at the terminal time T , namely Xn(T ). We study this by analyzing
the large deviation properties of the whole process Xn and then using the
Contraction Mapping Theorem. The Laplace formulation will be used to
perform the process level analysis. Let F be any bounded and continuous
function on U . The processes Xn are said to satisfy the Laplace principle
with rate function I if the following two conditions hold:
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1. For each K < ∞, the set {ϕ ∈ U : I(ϕ) ≤ K} is compact in U .

2.
lim

n→∞
− 1

n
logE exp [−nF (Xn)] = inf

ϕ∈U
[I(ϕ) + F (ϕ)] .

Since Xn takes values in a Polish space, the notions of Laplace principle and
large deviation principle are equivalent [3, Theorem 1.2.1] .

Define the I + 2 by I + 2 matrix

M =




−1 0 0 · · · 0 0 0
1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 0




.

Let ϕ ∈ U be given with ϕ0(0) = 1. Suppose there is a Borel measurable
function θ : [0, T ] 7−→ SI such that for any t ∈ [0, T ]

ϕ(t) = ϕ(0) +
∫ t

0
Mθ(s)ds. (2.3)

We interpret θi(s) as the rate at which balls are thrown into urns that contain
i balls at time s. Moreover θ(s) is unique in the sense that if another θ̃ : [0, T ]
7−→ SI satisfies (2.3) then θ̃ = θ a.e. on [0, T ] . We call ϕ a valid occupancy
state process if there exists θ : [0, T ] 7−→ SI satisfying (2.3). In this case θ
is called the occupancy rate process associated with ϕ. It is easy to observe
that if ϕ is valid then ϕ(s) satisfies (2.2) for all s ∈ [0, T ]. This shows that
ρ (s, ϕ(s)) ∈ SI .

The relative entropy function will be used throughout the paper and we
define it now. For two probability measures α and β on a Polish space A,
the relative entropy of α with respect to β is defined by

R (α||β) .=
∫

A

(
log

dα

dβ

)
dα

whenever α is absolutely continuous with respect to β (and with the con-
vention that 0 log0 = 0). In all other cases we set R (α||β) = ∞. When two
probability vectors ρ and ν ∈ SI appear in the relative entropy function, we
interpret them as probability measures on the simplex {0, 1, . . . , I, I + 1},
and thus

R (ρ||ν) .=
I+1∑

i=0

ρi log
ρi

νi
.
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As observed before, when ϕ(s) is valid, ρ (s, ϕ(s)) ∈ SI , which makes
R(θ(s)||ρ (s, ϕ(s))) well defined. For such ϕ define

I(ϕ) =
∫ T

0
R(θ(s)||ρ (s, ϕ(s)))ds. (2.4)

If ϕ is not valid then define I(ϕ) = ∞. In the next three sections we will
prove the urn models constructed in this section satisfy the Laplace principle
with rate function I. In particular, in Section 3 we will prove

lim inf
n→∞

− 1
n

logE exp [−nF (Xn)] ≥ inf
ϕ∈U

[I(ϕ) + F (ϕ)] ,

and in Section 5 we will prove

lim sup
n→∞

− 1
n

log E exp [−nF (Xn)] ≤ inf
ϕ∈U

[I(ϕ) + F (ϕ)] .

These bounds are equivalent to the large deviation upper and lower bound
[3]. In Section 4, we will prove several properties of the rate function I, and
in particular show that I has compact level sets.

It will turn out that certain representation formulas for exponential in-
tegrals simplify proving the Laplace principle. Consider a controlled process
X̄n(t) constructed as follows. The process dynamics are of the same general
structure as those of Xn, save that yi,n (Xn (i/n)) is replaced by a sequence
of controlled random vectors ȳi,n. Let (V ,A) be a measurable space and Y
a Polish space and let τ(dy|x) be a family of probability measures on Y
parameterized by x ∈ V . We call τ(dy|x) a stochastic kernel on Y given V if
for every Borel subset E of Y the function mapping x ∈ V 7→ τ(E|x) ∈ [0, 1]
is measurable. The conditional distributions of the controlled random vec-
tors will be specified by a sequence

{
νi,n : i = 0, 1, . . . , bnT c

}
, where each

quantity νi,n = νi,n (x0, x1, x2, . . .xi) is interpreted as a stochastic kernel on
Λ given (SI)

i+1. We call such a sequence
{
νi,n : i = 0, 1, . . . , bnT c

}
an ad-

missible control sequence. Each control νi,n will give rise to a corresponding
relative entropy term in the representation formula.

The controlled process is determined by

X̄n ((i + 1)/n) = X̄n (i/n) +
1
n

ȳi,n for i = 0, 1, . . .bnT c

X̄n(0) = (1, 0, . . .0),

where ȳi,n has the conditional distribution νi,n
(
X̄n (0) , . . . , X̄n (i/n)

)
. The

random vectors X̄n (i/n) and ȳi,n are defined recursively in the following
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order:

X̄n(0), ȳ0,n, X̄n(1/n), ȳ1,n, X̄n(2/n), . . . , X̄n(bnT c /n), ȳbnT c,n.

For all n ∈ N the controlled random vectors X̄n(i/n) and ȳi,n are defined
on a common probability space

(
Ω̄, F̄,P̄

)
, and expectation on this space is

denoted by Ē. Define

ρi,n .= ρ
(
i/n, X̄n(i/n)

)
,

where ρ (t, x) was defined previously in (2.1) . Then by [3, Proposition 1.4.2]
and the chain rule for relative entropy [3, Theorem C.3.1]

− 1
n

log E exp [−nF (Xn)] = inf
{νi,n}

Ē


F

(
X̄n

)
+

1
n

bnT c∑

i=0

R
(
νi,n||ρi,n

)

 ,

(2.5)
where the infimum is over all the admissible control sequences

{
νi,n

}
.

3 The Large Deviation Upper Bound

In this section, we prove

lim inf
n→∞

− 1
n

logE exp [−nF (Xn)] ≥ inf
ϕ∈U

[I(ϕ) + F (ϕ)] ,

which corresponds to the large deviation upper bound. By (2.5) it is enough
to show that

lim inf
n→∞

inf
{νi,n}

Ē


F

(
X̄n

)
+

1
n

bnT c∑

i=0

R
(
νi,n||ρi,n

)

 ≥ inf

ϕ∈U
[I(ϕ) + F (ϕ)] .

For 0 ≤ l ≤ bnTc and t ∈ [l/n, l/n + 1/n), define

X̂n(t) = X̄n(l/n).

Thus X̂n is the piecewise constant interpolation of the occupancy process.
Note that for all ω

sup
t∈[0,T ]

∣∣∣X̂n(t) − X̄n(t)
∣∣∣ ≤ 1

n
.

Therefore if X̄n converges weakly to X̄, then also X̂n converges weakly to
X̄.
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We do the same thing for the controlled measures, and for t ∈ [l/n, l/n+
1/n) set

ν̂n(t) = νl,n and ρ̂n(t) = ρ

(
l

n
, X̂n(t)

)
.

Note that because relative entropy is nonnegative and (bnT c + 1) /n ≥ T ,

1
n

bnT c∑

i=0

R
(
νi,n||ρi,n

)
≥

∫ T

0

R (ν̂n(t)||ρ̂n(t))dt. (3.1)

For an SI−valued process {y(t)} we define 〈y〉 as its indefinite integral,
i.e.,

〈y〉(t) .=
∫ t

0
y(s)ds, for 0 ≤ t ≤ T.

Then 〈y〉 can be viewed as a vector of sub-cumulative distribution functions
taking values in the space

Q .= {〈y〉, y : [0, T ] 7→ SI is measurable} .

We consider Q as a subset of C([0, T ], RI+2) with the inherited topology.
Since each component of 〈y〉 is Lipschitz continuous (with Lipschitz con-
stant 1), the Arzela-Ascoli Theorem implies that Q is precompact. Choose
a convergent sequence 〈yn〉, with limit z. Since each component of z in-
herits the Lipschitz continuity and monotonicity of the 〈yn〉, a vector of
non-negative derivatives y exist, and for any 0 ≤ s ≤ t ≤ T these derivatives
satisfy ∫ t

s

I+1∑

i=1

yi(u)du =
I+1∑

i=1

[zi(t) − zi(s)] = t − s.

This implies that y ∈ SI for almost every t ∈ [0, T ], and hence z ∈ Q. We
conclude that Q is compact.

Let m ⊗ y be the vector of sub-probability measures generated by 〈y〉,
i.e., for each 0 ≤ i ≤ I + 1 and 0 ≤ a ≤ T

(m⊗ y)i((−∞, a]) .=
〈y〉i(a)

T
.

Each component of m ⊗ y can be viewed as taking values in the space of
sub-probability measures with the topology of weak convergence, and then
m ⊗ y as taking values in the product space with corresponding product
topology. However, we can also consider m ⊗ y as a probability measure
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on [0, T ]× {0, 1, . . .I, I + 1}, with the topology of weak convergence on this
space. These two topologies are clearly equivalent, and since uniform conver-
gence of sub-cumulative distribution functions implies the weak convergence
of the corresponding sub-probability measures, the mapping 〈y〉 7→ m⊗ y is
continuous. The Continuous Mapping Theorem then implies the following
result.

Lemma 3.1. Let Yn and Y be SI -valued random processes. If 〈Yn〉 converges
weakly to 〈Y 〉 then m ⊗ Yn converges weakly to m ⊗ Y .

We will also need conditions under which 〈Yn〉 will converge weakly to
〈Y 〉. Define V .= D([0, T ] : SI) to be the space of functions that map [0, T ]
into SI , are right continuous, and have left-hand limits. Note that U ⊂ V .
We equip V with the standard Skorohod metric s(·, ·) so that (V , s) is a
Polish space (cf. [1]). If yn ∈ V , s(yn, y) → 0, and if y ∈ U , then in
fact yn(t) → y(t) uniformly in t ∈ [0, T ], and hence 〈yn〉 → 〈y〉. Another
application of the Continuous Mapping Theorem gives the following.

Lemma 3.2. Suppose a sequence of V-valued processes Yn converges weakly
to the U -valued process Y . Then 〈Yn〉 converges weakly to 〈Y 〉, and hence
m ⊗ Yn converges weakly to m ⊗ Y .

We will also need the following formula, which can be verified directly
from the given definitions:

∫ T

0
R (ν̂n(t)||ρn(t))dt = TR (m ⊗ ν̂n||m⊗ ρn) . (3.2)

Next we will prove the key weak convergence theorem used in the process
level analysis.

Theorem 3.3. Define a sequence of controlled processes and controls (X̄n(t), ν̂n(t))
as above. Then {(

X̄n, 〈ν̂n〉
)
, n ∈ N

}

is tight. For any sequence from
{(

X̄n, 〈ν̂n〉
)
, n ∈ N

}
consider a further sub-

sequence that converges in distribution to (X, η). Then the limit processes
have the following properties:

1. There exists an SI−valued process θ so that η = 〈θ〉 w.p.1.

2. The process X is a valid occupancy process and the process θ is the
occupancy rate process associated with X, i.e., w.p.1.

X(t) = X(0) +
∫ t

0
Mθ(s)ds for all t ∈ [0, T ] .
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Proof. Both X̄n and 〈ν̂n〉 are uniformly (in n and ω) Lipschitz continu-
ous. Hence by the Arzela-Ascoli Theorem,

{(
X̄n, 〈ν̂n〉

)
, n ∈ N

}
is tight.

Let (X, η) denote the weak limit of a convergent subsequence. Since the
second component takes values in Q and this space is compact, there exists
a measurable SI-valued process θ(t) so that η = 〈θ〉.

Notice that for each 0 ≤ i ≤ I + 1 and 0 ≤ l ≤ bnT c, and with the
notational conventions eI+2 = eI+1 and ν̂−1(t) = 0,

X̄n
i

(
l + 1

n

)
− X̄n

i

(
l

n

)

=
1
n

1{ȳl,n=ei−ei−1} − 1
n

1{ȳl,n=ei+1−ei}

=
1
n

ν̂n
i−1

(
l

n

)
− 1

n
ν̂n
i

(
l

n

)
+

1
n

Ŷ n
i

(
l

n

)
, (3.3)

with Ŷ n
i

(
l
n

)
implicitly defined by

Ŷ n
i

(
l

n

)
=

[
1{ȳl,n=ei−ei−1} − ν̂n

i−1

(
l

n

)]
−

[
1{ȳl,n=ei+1−ei} − ν̂n

i

(
l

n

)]
.

In the same way that we defined ν̂n, X̂n on the whole [0, T ] by piecewise con-
stant interpolation, we can also define Ŷ n (t) on [0, T ]. Let Fn

l be the natural
filtration, i.e., the σ−algebra generated by

{
X̄n(0), X̄n(1/n), . . . , X̄n(l/n)

}
.

Then

E
[
1{ȳl,n=ei−ei−1}|F

n
l

]
= ν̂n

i−1

(
l

n

)
,

which shows that
{
Ŷ n

i

(
l
n

)}
, 0 ≤ l ≤ bnT c is a martingale difference with

respect to Fn
l .

We have observed that
{∑k

l=0 Ŷ n
i

(
l
n

)
: 0 ≤ k ≤ bnT c

}
is a martingale

with respect to Fn
k . It is also easy to see that E

[
Ŷ n

i

(
l
n

)]2
= O(1). Summing

(3.3) shows that for any 0 ≤ l ≤ bnT c

X̄n
i (l/n)− X̄n

i (0) = 〈ν̂n
i−1〉 (l/n)− 〈ν̂n

i 〉 (l/n) + 〈Ŷ n
i 〉 (l/n) .

Owing to the fact that the jumps in the discrete time processes are uni-
formly bounded, if t ∈

[
l
n , l+1

n

)
for some 0 ≤ l ≤ bnT c then 〈ν̂n〉 (t) =

〈ν̂n〉 (l/n) + O(1/n) and 〈Ŷ n〉 (t) = 〈Ŷ n〉 (l/n) + O(1/n), where the O(1/n)
term does not depend on ω. Since the Lipschitz continuity of X̄n implies∣∣X̄n (t) − X̄n (s)

∣∣ ≤ |t − s|, for any s, t ∈ [0, T ]

X̄n
i (t) − X̄n

i (0) = 〈ν̂n
i−1〉 (t) − 〈ν̂n

i 〉 (t) + 〈Ŷ n
i 〉 (t) + gn

i (t).

11



where gn
i (t) converges to 0 uniformly in t and in ω. Recalling that

{
Ŷ n

i

(
l
n

)}
,

0 ≤ l ≤ bnTc is a martingale difference and E
(
〈Ŷ n

i 〉2
(

l
n

))
= O(1/n), by a

standard martingale inequality

〈Ŷ n
i 〉 (t) → 0 uniformly for t ∈ [0, T ], w.p.1.

Since 〈Ŷ n
i 〉 (t)+gn

i (t) converges to 0 w.p.1 and
(
X̄n

i (t) − X̄n
i (0) , 〈ν̂n

i−1〉 (t) − 〈ν̂n
i 〉 (t)

)

converges weakly to (Xi (t) − Xi (0) , ηi−1 (t) − ηi (t)),

Xi (t) − Xi (0) = ηi−1 (t) − ηi (t) w.p.1.

Recall that we have proved the existence of a process θ so that η(t) =∫ t
0 θ(s)ds. Thus the last display can be rewritten

Xi(t) − Xi(0) = 〈θ〉i−1(t) − 〈θ〉i(t) w.p.1,

which is indeed

X(t) = X(0) +
∫ t

0
Mθ(s)ds w.p.1.

Theorem 3.4. Define I by (2.4) for any of the occupancy models discussed
in Section 2. If F : U 7→ R is bounded and continuous, then

lim inf
n→∞

− 1
n

logE exp [−nF (Xn)] ≥ inf
ϕ∈U

[I(ϕ) + F (ϕ)] .

Proof. Owning to the representation formula (2.5) it is enough to show
that

lim inf
n→∞

inf
{νi,n}

Ē


F

(
X̄n

)
+

1
n

bnT c∑

i=0

R
(
νi,n||ρi,n

)

 ≥ inf

ϕ∈U
[I(ϕ) + F (ϕ)] .

Consider any admissible sequence
{
νi,n

}
. Then (3.1) and (3.2) imply

Ē


F

(
X̄n

)
+

1
n

bnT c∑

i=0

R
(
νi,n||ρi,n

)



≥ Ē

[
F

(
X̄n

)
+

∫ T

0
R (ν̂n(t)||ρ̂n(t))dt

]

= Ē
[
F

(
X̄n

)
+ TR (m ⊗ ν̂n||m⊗ ρ̂n)

]
.
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By Theorem 3.3 we know for any subsequence of N, there exists a subsubse-
quence such that

{(
X̂n, 〈ν̂n〉

)}
converges in distribution to a limit (X, 〈θ〉).

Let

W .=

{
x ∈ V :

I+1∑

i=1

ix(t) ≤ t, for 0 ≤ t ≤ T

}
.

Due to our construction of the controlled process X̂n, we know that for each
ω, X̂n(ω) ∈ W . For a ∈ (0,∞)∪ {−1,−2, . . .} and x ∈ W define g(x) by

(g(x))i(t)
.=

a + i

a + t
xi(t), for 0 ≤ i ≤ I

and

(g(x))I+1(t)
.= 1 −

I∑

i=0

a + i

a + t
xi(t).

Then g maps W to V . The case a = ∞ is defined as the obvious limit.
When a ∈ (0,∞] g is clearly bounded and continuous. When a < 0 the
boundedness of g is not as trivial but still elementary. We know that when
a < 0, balls are only thrown among the categories 0, 1, . . . ,−a − 1. Thus
if there are n urns there can at most be −an balls thrown, and therefore
T ≤ −a. When T = −a all the urns have exactly −a balls, which is not an
interesting case to study. We therefore assume T < −a. Also, because of the
same restriction on the possible categories we can (without loss) Therefore

||g|| ≤ −i − a

−t − a
≤ −a

−a − T
=

a

a + T
,

which shows that g is bounded. The argument to show continuity is similar
and omitted.

With these definitions we have g
(
X̂n

)
(t) = ρ̂n(t) and g(X)(t) = ρ(t, X(t)).

Since X̂n, X ∈ W , we have ρ̂n and ρ(·, X(·)) ∈ V . By the Continuous Map-
ping Theorem and the definition of ρ̂n, weak convergence of X̂n to X implies
weak convergence of ρ̂n to ρ(t, X(t)) in V . Applying Lemma 3.2, we have
that m ⊗ ρ̂n converges weakly to m ⊗ ρ. Similarly, by Lemma 3.1 the weak
convergence of 〈v̂n〉 to 〈θ〉 implies the weak convergence of m⊗ v̂n to m⊗ θ.

Now applying Fatou’s Lemma (for weak convergence) and using the lower
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semicontinuity of relative entropy,

lim inf
n→∞

Ē


F

(
X̄n

)
+

1
n

bnT c∑

i=0

R
(
νi,n||ρi,n

)



≥ lim inf
n→∞

Ē
[
F

(
X̄n

)
+ TR (m ⊗ ν̂n||m⊗ ρ̂n)

]

≥ Ē [F (X) + TR (m ⊗ θ||m ⊗ ρ)] (3.4)

= Ē

[
F (X) +

∫ T

0
R (θ(t)||ρ(t, X(t)))dt

]
.

As proved in Theorem 3.3, X(t) = X(0) +
∫ t
0 Mθ(s)ds, therefore by the

definition (2.4) of the rate function I(ϕ),
∫ T

0
R (θ(t)||ρ(t, X(t)))dt = I(X).

Thus (3.4) yields

lim inf
n→∞

inf
{νn

i }
Ē


F

(
X̄n

)
+

1
n

bnT c∑

i=0

R
(
νi,n||ρi,n

)

 ≥ inf

ϕ∈U
[I(ϕ) + F (ϕ)] .

Hence we complete the proof of the large deviation upper bound.

4 Properties of the Rate Function.

In this section, we will prove some important properties of the rate function,
some of which will be used later on to prove the large deviation lower bound.

Theorem 4.1. Let I be defined as in (2.4). Then for any K ∈ [0,∞) the
level set {ϕ ∈ U : I(ϕ) ≤ K} is compact.

Proof. As is always the case in the weak convergence approach, the proof of
compactness of level sets is essentially a deterministic analogue of the proof
of the large deviation upper bound, and hence omitted. See [3, Proposition
6.2.4] for the proof in an analogous situation.

Theorem 4.2 (Zero Cost Trajectory). For t ∈ [0, T ] let f(t) =
(
1 + t

a

)−a

(f(t) = e−t in the case a = ∞),

φi(t) =
(−t)i

i!
f (i)(t) for 0 ≤ i ≤ I,

and let φI+1(t) = 1 −
∑I

i=0 φi(t). Then I(φ) = 0.

14



Proof. We first assume a 6= ∞. It is easy to see that for any 0 ≤ i < ∞,

(−t)i

i!
f (i)(t) ≥ 0 and

∞∑

i=0

(−t)i

i!
f (i)(t) = 1. (4.1)

Thus φ as defined in the statement of the theorem is indeed a probability
vector. It is also clearly a continuously differentiable function. We will show
that

φ̇(t) = Mρ(t, φ(t)). (4.2)

If so, then the occupancy rate process θ associated to φ is indeed ρ(t, φ(t)),
and thus by the definition of rate function

I(φ) =
∫ T

0
R (θ(t)||ρ(t, φ(t)))dt = 0.

To show (4.2) we calculate φi(t) = (−t)i

i! f (i)(t) for 0 ≤ i ≤ I explicitly:

φi(t) =
ti

i!

∏i−1
j=0(a + j)

ai

(
1 +

t

a

)−a−i

.

Hence the derivative satisfies

φ̇i(t) =
a + i− 1

a + t
φi−1(t) −

a + i

a + t
φi(t)

= ρi−1(t, φ(t))− ρi(t, φ(t))
= (Mρ(t, φ(t))i,

where the second equality is due to the definition of ρ(t, φ(t)). The case of
φI+1(t) is also a straightforward calculation and hence omitted.

Next we consider the case when a = ∞. In this case f(t) = e−t, and the
validity of (4.2) can be directly verified.

Lemma 4.3. For every choice of the parameter a there exist δ > 0 and
0 < K < ∞ so that the zero cost trajectory φ(t) is away from the boundary
of SI, i.e.,

φi(t) ≥ δtK (4.3)

for any 0 ≤ i ≤ I + 1.

Proof. Note that when a > 0, 0 ≤ i ≤ I and 0 ≤ t ≤ T ,

φi(t) =
ti

i!

∏i−1
j=0(a + j)

ai

(
1 +

t

a

)−a−i

≥ ti

I !

(
1 +

T

a

)−a−I

, (4.4)
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and because of (4.1) we have

φI+1(t) = 1 −
I∑

i=0

φi(t) (4.5)

≥ (−t)I+1

(I + 1)!
f (I+1)(t)

≥ tI+1

(I + 1)!

(
1 +

T

a

)−a−I−1

. (4.6)

For the case a < 0 we have T < −a and a ≤ −I − 1. Recall that for
0 ≤ i ≤ I

φi(t) =
ti

i!

∏i−1
j=0(a + j)

ai

(
1 +

t

a

)−a−i

.

Since a + I ≤ −1, a + j ≤ −1 for each 0 ≤ j ≤ I , and thus

φi(t) ≥
ti

I !
1

(−a)i

(
1 +

t

a

)−a−i

.

Moreover since a < 0 and −a−I > 0, for each fixed a and i ≤ I ,
(
1 + t

a

)−a−i

is monotone decreasing in t. Therefore

φi(t) ≥
ti

I !

(
−1

a

)i (
1 +

T

a

)−a−i

.

Lastly, since T < −a and a < 0, 0 < 1 + T/a < 1. Thus
(
1 + T

a

)−a−i
is

monotone increasing in i, and therefore

φi(t) ≥
ti

I !

(
−1

a

)i (
1 +

T

a

)−a

.

For φI+1(t) we have

φI+1(t) = 1 −
I∑

i=0

φi(t)

≥ (−t)I+1

(I + 1)!
f (I+1)(t)

=
tI+1

(I + 1)!

∏I
j=0(a + j)

aI+1

(
1 +

t

a

)−a−I

≥ tI+1

(I + 1)!

(
−1

a

)I+1 (
1 +

T

a

)−a

.
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The last inequality follows exactly the same reasoning as for 0 ≤ i ≤ I .
Finally, for the case a = ∞ we just take limits on (4.4) and (4.5), and

use that

lim
a→∞

(
1 +

T

a

)−a−I

= e−T .

If follows that for every choice of the parameter a there exist δ > 0 and
0 < K < ∞ so that the zero cost trajectory φ(t) satisfies (4.3) for any
0 ≤ i ≤ I + 1.

Lemma 4.4. For a given value of a let the parameters δ and K be as in
(4.3). Let ϕ ∈ U satisfy I(ϕ) < ∞. Then for any ε > 0 there exists ϕε ∈ U
such that

1. I(ϕε) ≤ I(ϕ),

2. d(ϕ, ϕε) ≤ ε,

3. ϕε
i (t) ≥ εδtK for all t ∈ [0, T ] and i = 0, 1, . . .I, I + 1.

Proof. For any ε > 0 and ϕ ∈ U , let

ϕε = (1 − ε)ϕ + εϕ̄,

where ϕ̄ is the zero cost trajectory. Then ϕε ∈ U . From the definition
of ρ(t, x) in (2.1) it follows that ρ(t, x) is linear in x. Also, recalling the
definition of I(ϕ) in (2.4) and the joint convexity of relative entropy, we find
that I(ϕ) is convex in ϕ. Therefore

I(ϕε) ≤ (1− ε) I(ϕ) + εI(ϕ̄)
= (1− ε) I(ϕ)
≤ I(ϕ).

Since d (ϕ, ϕ̄) ≤ 1
d(ϕ, ϕε) ≤ εd (ϕ, ϕ̄) ≤ ε,

and also ϕε ≥ εϕ̄ ≥ εδtK .

The final theorem of this section is essential in proving the large deviation
lower bound.

Definition 4.5 (Good Path). We call an occupancy process ϕ ∈ U a
“good path” if there exist constants 0 < δ′, K ′ < ∞ so that ϕi(t) ≥ δ′tK

′
for

t ∈ [0, T ] and 0 ≤ i ≤ I + 1.
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Definition 4.6 (Good Control). We call an occupancy rate process θ a
“good control” if the process θ is piecewise constant on [0, T ], with a finite
number of intervals of constancy. In other words, there exist a finite number
of intervals [ri, si], 1 ≤ i ≤ m so that [0, T ] = ∪m

i=1[ri, si], and θ(t) is a
constant vector on each (ri, si) . In addition, we assume there exists 0 <

σ < T so that θ is “pure” on [0, σ), in the sense that for any interval of
constancy (r, s) ⊂ [0, σ), there exists i, 0 ≤ i ≤ I + 1 such that θi(t) = 1 for
t ∈ (r, s).

Theorem 4.7. For a good path ϕ ∈ U assume I(ϕ) < ∞. Let δ′, K ′ be the
associated constants in the definition of a good path. For any ε > 0 there
exists a good control θ∗ and associated σ > 0 so that if ϕ∗ is the occupancy
path associated to θ∗, then

1. I(ϕ∗) ≤ I(ϕ) + ε,

2. d (ϕ∗, ϕ) ≤ ε,

3. if t < σ and θ∗i (t) = 1 then ϕ∗
i (t) > δ′σK′

.

Proof. For a σ > 0 that will be specified later on, we construct a pure
control θ∗(t), t ∈ [0, σ) as follows. For 0 ≤ i ≤ I let θ∗i (t) = 1 if

i∑

j=0

jϕj(σ) +
I+1∑

k=i+1

iϕk(σ) ≤ t <

i∑

j=0

jϕj(σ) +
I+1∑

k=i+1

(i + 1)ϕk(σ),

and let θ∗I+1(t) = 1 if

I∑

j=0

jϕj(σ) + (I + 1)ϕI+1(σ) ≤ t < σ.

Observe that the component ϕi will increase only during the interval when
θ∗i−1(t) = 1, and that it decreases to its final value while θ∗i (t) = 1. Observe
also that ϕ∗(σ) = ϕ(σ). Hence for t < σ, if θ∗i (t) = 1 then ϕ∗

i (t) > ϕ∗
i (σ) ≥

δ′σK′
.

Now assume that 0 < a < ∞. For such i and t,

ρi(t, ϕ∗(t)) =
a + i

a + t
ϕ∗

i (t)

≥ a

a + T
δ′σK′

= δ′′σK′
, (4.7)
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where δ′′ is defined as a
a+T δ′. Note that the above bound is true for all

0 ≤ i ≤ I + 1.
Recall that when a < 0 we can assume without loss that a + 1 + I ≤ 0,

and that no balls are placed in urns that currently contain more than I balls.
It follows that

I+1∑

j=0

jϕj(σ) = σ,

and that θI+1(t) is always zero. Hence the same will be true of θ∗I+1(t), i.e.,
θ∗I+1(t) = 0 for all t ∈ [0, σ]. For 0 ≤ i ≤ I , we have

ρi(t, ϕ∗(t)) ≥ a + i

a + t
δ′σK′

≥ a + I

a + t
δ′σK′

≥ a + I

a
δ′σK′

≥ −1
a
δ′σK′

.

Thus for such i there exists a constant δ′′ > 0 so that ρi(t, ϕ∗(t)) ≥ δ′′σK′

when θ∗i (t) = 1.
Finally, when a = ∞ we can choose δ′′ = δ′ and (4.7) will hold.
This completes the construction of θ∗ and ϕ∗ on [0, σ). The lower bounds

on the ρi and the fact that θ∗ is pure on [0, σ] imply
∫ σ

0
R (θ∗(t)||ρ(t, ϕ∗(t)))dt ≤ −σ log

(
δ′′σK′

)
.

Now let us choose σ small enough so that
∫ σ
0 R (θ∗(t)||ρ(t, ϕ∗(t)))dt ≤ ε/2

and supt∈[0,σ) |ϕ∗(t) − ϕ(t)| < ε. Also, recall that under the construction
ϕ∗(σ) = ϕ(σ).

The construction of controls on [σ, T ] is easier. Let θ(t) be the rate
process associated with ϕ(t) by (2.3). For M ∈ N we partition [σ, T ] into
M subintervals of length cM = (T − σ)/M. For each s that σ + lcM ≤ s ≤
σ + (l + 1) cM where 0 ≤ l ≤ (M − 1), let

θ(M)(s) =

∫ σ+(l+1)cM

σ+lcM
θ(t)dt

cM
.

Let ϕ(M)(t) be the occupancy path associated with θ(M)(t). Then it is easy
to check that ϕ(M)(t) coincides with ϕ(t) on the “partition points” in [σ, T ] ,
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i.e., those points of the form {σ + lcM : 0 ≤ l ≤ (M − 1)} . Thus for M large
enough (e.g., M > (T − σ) /ε), supt∈[σ,T ]

∣∣ϕ(M)(t) − ϕ(t)
∣∣ < ε.

Because ϕ(t) is good, when t > σ, we have ϕ(t) > δ′tK
′ ≥ δ′σK′

> 0.

Therefore ϕ(t) is uniformly bounded away from the boundary after time
σ. As M → ∞, θ(M)(t) converges to θ(t) and ϕ(M)(t) converges to ϕ(t) a.e.,
and thus by the Lebesgue Dominated Convergence Theorem

lim
M→∞

∫ T

σ
R

(
θM (t)||ρ(t|ϕM(t))

)
dt =

∫ T

σ
R (θ(t)||ρ(t|ϕ(t)))dt.

Now choose M < ∞ large enough so that
∫ T
σ R

(
θM (t)||ρ(t|ϕM(t))

)
dt <∫ T

σ R (θ(t)||ρ(t|ϕ(t)))dt + ε/2. Let θ∗ be defined as it was previously on
[0, σ], and set it equal to θM on [σ, T ]. We have

I(ϕ∗) =
∫ T

σ
R

(
θM (t)||ρ(t|ϕM(t))

)
dt +

∫ σ

0
R (θ∗(t)||ρ(t|ϕ∗(t)))dt

<

∫ T

σ
R (θ(t)||ρ(t|ϕ(t)))dt + ε/2 + ε/2

≤ I(ϕ) + ε.

Thus we complete the proof.

5 The Large Deviation Lower Bound

Theorem 5.1. Define I by (2.4) for any of the occupancy models discussed
in Section 2. If F : U 7→ R is bounded and continuous, then

lim sup
n→∞

− 1
n

log E exp [−nF (Xn)] ≤ inf
ϕ∈U

[I(ϕ) + F (ϕ)] .

Proof. According to (2.5), the theorem follows if

lim sup
n→∞

inf
{νi,n}

Ē


F

(
X̄n

)
+

1
n

bnT c∑

i=0

R
(
νi,n||ρi,n

)

 ≤ inf

ϕ∈U
[I(ϕ) + F (ϕ)] .

For any ϕ ∈ U such that I(ϕ) < ∞, Lemma 4.4 and Theorem 4.7 imply
that for any ε > 0 there exists (ϕ∗, θ∗) with the properties described in
Theorem 4.7. Since F is continuous in U , we only need to show that there
exists a sequence of admissible controls {νn} so that

lim sup
n→∞

Ē


F

(
X̄n

)
+

1
n

bnT c∑

i=0

R
(
νi,n||ρi,n

)

 ≤ I(ϕ∗) + F (ϕ∗).
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The latter inequality will follow if we can find a sequence of admissible {νn}
such that

lim sup
n→∞

Ē



bnT c∑

i=0

R
(
νi,n||ρi,n

)

 ≤ I(ϕ∗), (5.1)

and such that if X̄n is the occupancy process constructed under {νn} then
for any small b > 0

lim sup
n→∞

P̄
{
d

(
X̄n, ϕ∗) > b

}
= 0. (5.2)

In other words, X̄n converges to ϕ∗ in probability.
To prove the desired inequalities (5.1) and (5.2) we need to construct

the proper {νn} . Recall that {νn} can depend in any measurable way on
the “past,” and so we could, in principle, use such information in construct-
ing the controls. However, it turns out that we can construct the controls
without reference to the controlled process (so-called “open loop” controls).
Let θ∗ be the good control as described in Theorem 4.7. We know that θ∗

is piecewise constant and pure up to time σ > 0. We also know that be-
fore time σ, if θ∗i (t) = 1 then both ρi(t, ϕ∗(t)) and ϕ∗

i (t) are greater than a
fixed value ζ > 0. We can also assume for the same value of ζ that both
ρi(t, ϕ∗(t)) and ϕ∗

i (t) are greater than ζ for all i ∈ [0, 1, . . . I, I + 1] and all
t ∈ [σ, T ].

Although the limit trajectory stays away from the boundary after time
σ, there is no guarantee that the random process X̄n is uniformly bounded
away. In order to handle this possibility, we use a stopping time argument
similar to one used in [8].

Let (ln/n) be the minimum of the first time such that for some i, X̄n
i (ln/n) ≤

ζ/2 and θ∗i (ln/n) > 0, and the fixed deterministic time T . This is the first
time the random process is close to the boundary, and hence there is the pos-
sibility of a large contribution to the total cost [note that when θ∗i (ln/n) = 0
there is no contribution to the cost regardless of the value of X̄n

i (ln/n)]. The
control {νn} is then defined by

νi,n =
{

θ∗(i/n) if i ≤ ln
ρ

(
i/n, X̄n(i/n)

)
if i > ln.

Prior to the stopping time, we use exactly what θ∗ suggests, and after the
stopping time we follow the law of large number trajectory (and therefore
incur no additional cost).

Now we apply Theorem 3.3. Thus given any subsequence we have con-
vergence along a further subsequence as indicated in the theorem, with limit
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(
X̄, [θ̄]

)
. Using a standard argument by contradiction, it will be enough to

prove (5.1) and (5.2) for this convergent processes. Let τn = (ln/n) ≤ T .
Note that because the applied controls are pure, the process X̄n(t) is de-
terministic prior to σ, and also that prior to this time, the time derivatives
of X̄n(t) and ϕ∗(t) are piecewise constant. In fact, the two derivatives are
identical except possibly on a bounded number of intervals each of length
less than 1/n (the points where they may disagree are all located with within
distance 1/n of the endpoints of the intervals of constancy of ϕ̇∗(t)). Thus
for large n we cannot have τn < σ. Since the range of τn is a bounded set in
R, we can also assume τn converges in distribution to a limit τ , and without
loss we assume the convergence is along the same subsequence. Since τn ≥ σ
for large n we have τ ≥ σ w.p.1. It is easy to check that the limit control
processes w.p.1 satisfies

θ̄(t) =
{

θ∗(t) if t ≤ τ

ρ
(
t, X̄(t)

)
if t > τ

.

Owing to the definition of τn, if τ < T then X̄i(τ) ≤ ζ/2 for some i ∈
[0, 1, . . .I, I + 1] (although ϕ∗

i (t) ≥ ζ when t ∈ [σ, T ]).
We use that θ̄(t) = θ∗(t) when t ≤ τ and that θ∗(t) is deterministic.

As shown in Theorem 3.3,
(
X̄, θ∗

)
satisfies (2.3) for t ∈ [0, τ ] . Thus for

t ∈ [0, τ ] .
X̄(t) = ϕ∗(t) w.p.1.

This forms a contradiction since

X̄i(τ) ≤ ζ/2 < ζ ≤ ϕ∗
i (τ).

Therefore τ = T, and thus for all t ∈ [0, T ]

X̄(t) = ϕ∗(t) w.p.1.

This also indicates that the weak limit of the random processes is indeed
limit (ϕ∗, θ∗), which implies (5.2). To prove (5.1), we use the weak conver-
gence and the Dominated Convergence Theorem:

lim sup
n→∞

Ē


 1

n

bnT c∑

i=0

R
(
νi,n||ρi,n

)



=
∫ T

0
R (θ∗(t)||ρ(t, ϕ∗(t)))

= I(ϕ∗).

This completes the proof.
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6 Explicit Formula for the LDP of the Process at

a Given Time

In the previous sections we have identified the large deviation rate function
(2.4) for a class of occupancy problems. The large deviation principle for the
process at a given fixed time can then be expressed in terms of the solution to
a calculus of variations problem. In this section we state a conjecture on the
solution to this problem. The explicit formula is analogous to one obtained
in [8] for the case of MB statistics, and it is possible that the techniques
developed there could be used here as well. At the present time, however,
we prefer to simply state the result as a conjecture in order to pursue a
potentially more general approach that would include such generalizations
as urn models with balls of different types.

Since the Maxwell-Boltzmann case is rigorously analyzed in [8], we also
assume a < ∞ (the formal statement can of course be obtained as a limit).
By the Contraction Mapping Theorem, the large deviation rate function for
an ending point ω is given by

J (ω) .= inf
ϕ∈C([0:T ]:SI),ϕ(T )=ω.

I(ϕ).

Define

(a)i
.=

i−1∏

j=0

(a + j)

for all i ∈ N, and also

Qa
i (x) .=

(x

a

)i (a)i

i!

(
1 +

x

a

)−a−i

for all i ∈ N and x ∈ [0, T ].
Denote πk = {πk

0 , πk
1 , . . . , πk

∞} ∈ R∞ for all 0 ≤ k ≤ I + 1, where πk
i

represents the probability of throwing i additional balls into the kth category.
Denote π = (π0, π1, . . . , πI , πI+1), so that π ∈ RI+2

∞ . For any given α ∈ SI ,
we say π = (π0, π1, . . . , πI , πI+1) ∈ F(α, ω, T ) if

∞∑

j=0

πk
j = 1 0 ≤ k ≤ I + 1,

I+1∑

k=0

αk

∞∑

j=0

jπk
j = T,

and

ωi =
i∑

k=1

αkπk
i−k 0 ≤ i ≤ I.
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With the above notation, we conjecture that in the case of empty initial
conditions

J (ω) = min
π0

R
(
π0||Qa(T )

)
,

where π0 satisfies

π0
i = ωi i = 0, . . . , I,

∞∑

i=0

π0
i = 1, and

∞∑

i=0

iπ0
i = T.

Moreover for a general initial condition α,

J (α, ω) = min
π∈F(α,ω,T )

I+1∑

k=0

αkR

(
πk

∥∥∥∥Qa+k

(
a + k

a
T

))
.
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